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SUMMARY

This paper discusses a new approach to modeling gear tooth surfaces. A computer graphics
solid modeling procedure is used to simulate the tooth fabrication processes. This procedure is
based on the principles of differential geometry that pertain to envelopes of curves and surfaces.
The procedure is illustrated with the modeling of spur, helical, bevel, spiral bevel, and hypoid
gear teeth. Applications in design and manufacturing are discussed. Extensions to nonstandard
tooth forms, to cams, and to rolling element bearings are proposed.

INTRODUCTION

A difficult task facing analysts and designers of geared power transmission systems is
understanding and utilizing the complex geometry of the gear teeth. Even for involute spur
gears where the tooth geometry is generally well understood, the details (e.g., trochoidal geom-
etry and profile modification) are neither simple nor accessible to most designers. For helical,
bevel, spiral bevel, and hypoid gears, the geometry is even more complex so that analyses and
designs are of necessity approximate and empirical. Optimal gear design is thus elusive. Even if
the optimal gear tooth geometry is known, it is distorted under load. Hence, the geometry of
meshing gear teeth is generally less than optimal. Indeed, the geometry of meshing gear teeth
under load is virtually beyond analytical description.

While the details of gear tooth geometry may not be important in many applications, for
precision gears the tooth geometry is the single most important factor influencing transmission
kinematics, gear strength, and gear wear. That is, gear tooth geometry has a greater effect upon
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the performance, strength, and life of gearing systems than any other factor. Accordingly, com-
prehensive gearing kinematic, strength, and life analyses cannot be conducted without an accu-
rate representation of the gear tooth geometry.

In recent years, a number of analysts (refs. 1 to 9) have used the procedures of differentia!
geometry and classical geometrical analyses to describe gear tooth surfaces. These analyses have
greatly extended understanding of surface geometry and contact kinematics. Some of these pro-
cedures have been combined with numerical methods to obtain tooth contact analyses (refs. 10
to 14). However, there is still a need for more extensive and more accurate representations of
gear tooth geometries if analysts and designers are to achieve improvements in transmission effi-
ciency, reliability, and life. Such improvements are especially desirable for precision gears
meshing under load. Better representations of gear tooth geometries are also essential for the
development of specialized, nonstandard tooth forms.

Recently, a new approach has been proposed to simulate the fabrication of gear teeth by
using computer graphics (refs. 15 and 16). This approach has led to a procedure for developing
solid models of gears which in turn can be used for studying meshing kinematics, contact
stresses, root stresses, and lubrication. Herein we discuss the analytical basis for the procedure
used to develop solid models of gears. The procedure is illustrated by developing models of spur,
helical, bevel, spiral bevel, and hypoid gears.

This report is divided into five sections, the first of which provides some background
material that was needed to develop the procedure for modeling gear tooth surfaces. The suc-
ceeding sections examine involute tooth generation, provide some graphical results, discuss the
procedure, and present conclusions.

PRELIMINARY ANALYSIS

Envelopes of Curves and Surfaces: Modeling of Surface Generation

Consider a plane curve C defined by the equation

y = f(x) (1)

Suppose that C has a typical form as in figure 1. Further, let C be such that it can be moved
(or repositioned) in the plane without being distorted. Let t be a parameter determining this
repositioning. Then as t varies, the locus of positions of C form the family of curves seen in
figure 2. The curve E, representing the limiting location of the family, is the "envelope" of the
family.

Suppose that a family of curves is represented in analytical form as

y = f(x,t) or F(x,y,t) = 0 (2)
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Then it is known that the envelope of the family is determined by the relation (refs. 17 and 18)

F/& = o (3)

That is, the elimination of the parameter t between equations (2) and (3) provides an analy-
tical description of E.

To illustrate the construction of an envelope, consider a family of lines such that each line
of the family is a fixed distance r from a fixed point 0, as depicted in figure 3. Let 4 define
the inclination of a typical line L of the family and let 9 define the inclination of the line
normal to L as shown. The equation of L may be written in the standard form

y - yp = m(x - xp) (4)

where m is the slope of L and where (xp,yp) are the coordinates of a point P of L. If P is
the point of intersection of L with the normal line which passes through 0, then m, 0, and
are related by the expression

m = tan $ = -cot 9 (5)

From figure 3 we see that the coordinates of P are

Xp = r cos 0 and yp = r sin 9 (6)

Hence, from equation (4), the equation of L may be expressed as

y - r sin 0 = (-cot 0)(x - r cos 0) (7)

In the form of equation (2), this becomes

y sin 0 + x cos 0 - r = F(x,y,O) = 0 (8)

Equation (8) defines a family of lines with 9 being the "family parameter." Then, from equa-
tion (3), if we differentiate with respect to 9, we have

aF/ = y cos0 - x sin#= 0 (9)

0
Hence, the equation of the envelope may be obtained by eliminating 9 between equations (8) 0
and (9). That is, by solving equations (8) and (9) for x and y we obtain

x =r cos 9 and y= r sin 9 (10)
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Finally, by eliminating 0, we have

x2 + y 2 = r 2  (11)

This is the equation of the envelope of the family of lines. As expected, it is a circle with radius
r and center 0.

The envelope of the edge of a cutting tool may be obtained in a similar manner. The cut-
ting tool envelope is the surface formed by the tool. Hence, using a procedure based upon equa-
tions (2) and (3), we may simulate surface generation in a manufacturing process. More
specifically, we can simulate and model gear tooth surfaces.

Involute of a Circle

To establish the procedures for modeling gear tooth surfaces, it is helpful to briefly review
the properties of involute curves. Recall that the involute of a circle may be characterized as the
locus of positions of the end point of a cord being unwrapped from the circle. Figure 4 depicts
an involute I of a circle C. Let P be a typical point on the involute and let measure the
unwrapping. Then the position vector p locating P relative to the circle center 0 may be
expressed as

p = xn. + yny = rnr + rono (12)

where x and y are the horizontal and vertical coordinates of P, r is the circle radius, and
nx, ny, nr, and nA are the horizontal, vertical, radial, and tangential unit vectors as shown in
figure 4. The uni't vectors are then related by the expressions

nr = sin Onx + cos On. and no = -cos Onx + sin 0 ny (13)

When a substitution for nr and no from equation (13) is made in equation (12), x and
y are seen to be related to r and 4 by the expressions

x = r sin 0 - ro cos 0 and y = r cos 0 + ro sin 0 (14)

Equations (14) are parametric equations defining the involute. The slope of the involute
at P is then

dy/dx = (dy/do)/(dx/do) = cot 0i (15)
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Use of Computer Graphics

The concept of parametric equations defining the envelope of a family of lines can be used
as a basis for computer graphics modeling of involute spur gear teeth. To illustrate, consider a
perfectly plastic circular disk rolling in a straight line, as in figure 5. Let the disk encounter a
rigid protrusion, such as an isosceles triangle, on the rolling surface. After the disk rolls over the
protrusion, the impression (or footprint) left in the plastic disk represents the envelope of the
sides of the triangle relative to a coordinate system fixed in the disk. This envelope is an
involute of a circle whose radius is equal to that of the rolling disk less the triangle height
(ref. 15).

This simulation can be used to represent the manufacture of an involute spur gear tooth:
Let the rolling disk be replaced by a gear blank rolling on its base circle as seen in figure 6.
When the rolling gear blank encounters a cutter in the shape of an involute rack tooth, the
impression on the blank is the gap between the teeth of an involute spur gear. Furthermore (as
demonstrated in refs. 15 and 16), the simulation also defines the trochoidal geometry at the root
of the gear teeth.

Figure 6 shows how this procedure was used with computer graphics software (ref. 19) to
simulate a gear blank rolling over a rack cutter.

The analysis of reference 15 and the image of figure 6 show that computer graphics can be
used to simulate involute gear tooth manufacture, as with a rack cutter or hob cutter. However,
the success of this simulation raises several questions: (1) Can the simulation be extended to the
manufacture of other tooth forms, that is, to noninvolute tooth forms? (2) Can the simulation be
extended to the manufacture of other gear forms, for example, to bevel, spiral-bevel, and hypoid
gears? (3) Can a procedure be developed for simulating surface generation in general? and (4) Is
there an analytical basis for such simulations? We address these questions in the following
sections.

ENVELOPE OF A ROLLING INVOLUTE CUTTER

To develop an analytical basis for the graphical simulation, consider first two rolling disks
W1 and W2 whose radii r1 and r2 define pitch circles of mating spur gears (fig. 7). Let a
cutter shaped like an involute tooth be placed on W2 and let G1 be a gear blank placed on
W1. The cutter will leave a gear tooth impression (or footprint) on the gear blank as W1 rolls
with W2.

To obtain an analytical representation of the impression, it is helpful to introduce coor-
dinate axes fixed in W1 and W2, as shown in figure 8. Let X - Y and X - Y be Cartesian
axes systems fixed in W1 and W2 with origins 01 and 02. Let a be the angle between
and X as W1 rolls on W2. Let L be the line connecting the centers 01 and 02. Let 01
be the angle between Y and L and let 02 be the angle between Y and L. Let P be a
typical point in space with coordinates ky relative to X-V and coordinates x,y relative to
X-Y. Then from figure 8, these coordinates are related by the expressions

x = (r, + r2 ) sin 02 + i cos a + t sin a
and (16)

y = (r, + r2 ) cos 02 - * sin a + t cos a

5



= (r, + r2 ) sin (a - 02) + x COs a - y sin a
and (17)

= -(r, + r2) cos (a - 02) + x sin a + y cos a

Observe that, since W, rolls on W21 a and 02 are not independent. Indeed, from
figure 8 we see that

a = 81 + 02  (18)

The rolling condition requires that

r 1e1 = r202  (19)

Hence, by solving for 62 and for a -02 we have

rlae rza (0
02 = and a - 02= (2)

r, + r 2  r, + r 2

Suppose that the graph of a function y = f(x) describes the cutter profile in W2. Then
from equations (16), the cutter profile may be represented in W1 (and, hence, also in gear blank
G1) as

y f[x(,k,a)j or F(*,9,a) = 0 (21)

The representation of the cutter proide in G, thus depends upon the roll angle a.
Hence, from equation (3), the envelope of the cutter profile in G1 is determined from equa-
tion (21) and the expression

aF(i,4,a)/8a = 0 (22)

By substituting for x and y from equations (16) into equation (21) and by using
equation (20), we have

(r, + r2 ) cos r 1  - sin a + cos a
Irl + r l (23)

= f 1(r 1 +r 2) sin r1a + : cos a + k sin a
r, + r2
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Then by performing the differentiation of equation (22), we obtain the expression

( rla ic -sia dfdx
-r 1 sin r* - Cos a - y sin a = df d

(r1 + r2) dx da

(24)

=~- -LL0 i~ -sin a+ kcos al( dx [ (r1 + r2 J

By using equations (16) and (20), equation (24) may be expressed in terms of x and y as

-x + r2 sin ra - JY - r2 ros t (25)

(r +r [dx [ r, + r2j

Suppose that the cutter profile is an involute (as in eq. (14)) with parameter 4. Then
from equation (15), df/dx equals cot 4 and equation (25) becomes

-x + r2 sin __ 1= (cot 4.) - r 2 cos r1 a (26)

1 + rl rI r,+ r2 1J

Multiplying by cos 4. and rearranging terms results in

x sin 4+ y cos . r2 cos ( ri (27)
10-r, + rzj

Observe, however, from equation (14) that

x sin .+ y cos 4 = r (28)

Thus, we have

Cos r 1 or r = t (29)

r, + r 2 j r, + r2

Finally, consider the expression of the involute cutter profile in GI: by substituting for x
and y from equations (14) into (17) and by using equation (20), we obtain
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i = (r, + r 2 ) sin -r'* + r 2 sin ( -a)- r20 COSB - a)
,r1 + r2 ]

= -(r c + r2) COS r2  r2 co( -a) + r2 sin( -) (30)
1 r, r2)

Observe from equation (24) that

-a = r* (r2) (31)trl + ,r2] trj]

where the parameter P is defined by the final equality. Hence, by substituting into equa-
tion (30), we have

= r, sin 6- r 1 p cos~ and y -rl Cos -r 1 psin f (32)

By comparing equations (32) with equations (14), we see that they have the same form. There-
fore, the envelope (or footprint) of the involute cutter in G1 is itself an involute.

COMPUTER GRAPHICS RESULTS

A computer graphics software system (ref. 19) was used to simulate the gear cutting
process for several types of gears. First, to simulate an involute rack cutter, a plastic disk was
rolled over a series of rigid straight-sided protrusions (fig. 6). The disk was examined and found
to have involute teeth cut into its surface. Finally, a similar procedure was used to generate
images of helical, bevel, spiral bevel, and hypoid gears. Figures 9 to 12 show the simulations.

DISCUSSION

The discussion presented earlier on the envelope of a family of curves establishes the basis
for a computer graphics procedure for simulating gear tooth generation. The analysis shows, for
example, that the envelope of an involute protrusion is an involute. While this is not a new or
unexpected result (indeed, it is the basis of spur gear fabrication by hobbing), the analysis
establishes that the result is based on the principles of differential geometry.

The computer graphics procedure described in this report provides a realistic simulation of
gear generation processes. The only simplifying assumptions involved are the assumptions of a
perfectly rigid cutting tool and a perfectly plastic workpiece (gear blank).

The significance of this result is that tooth form complexity need no longer be a hindrance
to comprehensive analysis and design; that is, the computer graphic procedure is unaffected by
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the complexity of the tooth form whereas analytical procedures quickly become intractable as
the complexity increases. Hence, the procedure can be applied without modification for the
analysis of bevel gear, hypoid gear, and noninvolute, nonstandard gear tooth forms.

The computer graphics procedure can also be used to define the geometry for a finite-
element model of a tooth form. The combined graphical and finite-element analysis is thus a
design tool for studying stresses and deformations in tooth forms, particularly in the less well
understood tooth forms of spiral bevel and hypoid gears. Noninvolute and nonstandard tooth
forms are also readily accommodated. Indeed, the computer graphics procedure can be used to
modify, develop, and examine new forms of conjugate teeth. It can also be used to study fillet
geometry, tip relief, dressing operations, and contact patch geometry.

The computer graphics procedure provides accurate simulations in a short time. For
example, the simulations shown in figures 9 to 12, although they have only two or three teeth,
are generally sufficient for stress analysis; noncontacting teeth have little effect upon the stresses
of contacting teeth. The run time for a spiral bevel gear simulation is approximately 1 hour on
an HP model 350 computer.

The computer graphics procedure can also be applied to the manufacture of tooth surfaces.
Tooth forms from arbitrary cutter shapes can be predicted. Conversely, cutter shapes producing
a desired tooth form can be determined. Specifically, the cutter profile for any given tooth form
is the conjugate of that tooth form. This conjugate can be generated using computer graphics
by rolling a blank disk over the desired tooth form. That is, the shape of the cutter profile is
the same as the impression left on the blank by the desired tooth form.

Finally, the computer graphics procedure can be extended to study surface generation in
general, and applications can be made to cam design, bearing design, and surface design of arbi-
trary rolling elements. Analogous procedures may be developed for simulating the manufacture
of skin surface- such as automobile fenders, airfoils, and ship hulls.

CONCLUSIONS

An analysis of the envelopes of families of curves, based on differential geometry, was
presented as the foundation for a solid modeling procedure. Commercial computer graphics
software was used to simulate gear tooth generation. The conclusions are

1. An analytical basis for numerical computer graphic modeling of gear tooth surfaces has
been established.

2. The computer graphic procedure can be used for the modeling and analyses of a wide
variety of tooth forms, including spur gears, helical gears, bevel gears, spiral bevel gears, hypoid
gears, and nonstandard gears.

3. The procedure may be extended to study the design and manufacture of rolling surfaces
in general and, ultimately, skin surfaces.
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Figure 4.-Involute geomnety.
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Figure 5.-A plastic disk rolling over a rigid triangular protrusion.
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Figure 6.-A gear blank roiling over a rack cutter.
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Figure 9.-Helloal gear simulaion. Figure 10O.-Bevel gear simulation.
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Figure 11 .- Spiral bevel gear simulation. Figure 1 2.-Hypoid gear simulation.
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